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Abstract

The recently developed discrete Boltzmann method (DBM), which is based on a uniform linear

evolution equation and has high parallel efficiency, is employed to investigate the dynamic nonequi-

librium process of Kelvin-Helmholtz instability (KHI). It is found that, the relaxation time always

strengthens the global nonequilibrium (GNE), entropy of mixing, and free enthalpy of mixing.

Specifically, as a combined effect of physical gradients and nonequilibrium area, the GNE intensity

first increases but decreases during the whole life-cycle of KHI. The growth rate of entropy of mix-

ing shows firstly reducing, then increasing, and finally decreasing trends during the KHI process.

While the free enthalpy of mixing is opposite to the entropy of mixing. Detailed explanations are

as below. (i) Initially, binary diffusion smooths quickly the sharp gradient in the mole fraction,

which results in a steeply decreasing mixing speed. (ii) Afterwards, the mixing process is signif-

icantly promoted by the increasing length of material interface in the evolution of the KHI. (iii)

As physical gradients are smoothed due to the binary diffusion and dissipation, the mixing speed

reduces and approaches zero in the final stage. Moreover, with the increasing Atwood number,

the global strength of viscous stresses on the heavy (light) medium reduces (increases), because

the heavy (light) medium has a relatively small (large) velocity change. Furthermore, for a larger

Atwood number, the peaks of nonequilibrium manifestations emerge earlier, the entropy of mixing

and free enthalpy of mixing change faster, because the KHI initiates a higher growth rate.
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I. INTRODUCTION

The Kelvin-Helmholtz instability (KHI), named after Lord Kelvin and Hermann von

Helmholtz, arises at the perturbed interface between fluids in shear motion, and leads to the

formation of vortices and turbulence [1, 2]. KHI phenomena are ubiquitous in nature and

engineering [3–5]. Examples include waves on a windblown ocean or sand dune, swirling

cloud billows, the stream structure of solar corona, the helical wave motion in ionized comet

tails, the Great Red Spot in Jupiters atmosphere, the Eagle Nebula in astrophysics, the

reacting mixing layers in combustion, and the ignition in inertial confinement fusion. The

KHI is one of the most fundamental and famous instabilities in fluid dynamics, and it is

often coupled with other instabilities, such as Rayleigh-Taylor Instability [6, 7], Richtmyer-

Meshkov instability [8, 9], etc. Hence, due to its great importance, the KHI has been studied

extensively in experimental [7, 10, 11], theoretical [6], and numerical fields [12, 13].

Particularly, with the rapidly improving computational facilities and algorithms, numer-

ical simulation has achieved more and more successes in scientific research and engineering

application. Roughly speaking, there are three kinds of numerical methods: microscopic

[14, 15], mesoscopic [13, 16], and macroscopic approaches [17], respectively. Microscopic

models, such as molecular dynamics [14] and direct simulation Monte Carlo [15], describe

the location and motion of particles in detail, but usually demand too high computational

cost. Macroscopic schemes, such as direct numerical simulation, large eddy simulation, and

Reynolds-averaged Navier-Stokes (NS) equations, improve computational efficiency signifi-

cantly, but lose various thermodynamic nonequilibrium information which plays an essential

role in interfacial dynamics. To reach a compromise between the computational cost and

physical fidelity, a promising method is mesoscopic kinetic modelling based on the Boltz-

mann equation.

In the last three decades, the kinetic-bsed lattice Boltzmann method (LBM) [18–20] has

been developed and become a powerful tool for investigating coherent structures and detailed

nonlinear dynamics of complex flows, including the KHI [21–26]. However, most researchers

were more likely to take the LBM as a numerical solver of hydrodynamic equations rather

than a kinetic model of nonequilibrium systems. Therefore, little consideration has been

given to the kinetic nature of related systems. As a novel variant of the LBM, the discrete

Boltzmann method (DBM) overcomes the above issue [27–32]. It has the capability of
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simulating the dynamic process of KHI properly by incorporating essential nonequilibrium

effects [27–32]. In 2011, Gan et al. proposed a kinetic model for compressible systems and

studied the KHI under the influence of velocity and density gradients [27]. This model

recovers the Euler equations in the continuum limit, and works for single-component flows.

In 2016, Lin et al. developed a DBM for two-component systems [31]. This model recovers

the compressible NS equations when the Knudsen number approaches zero [31], and provides

more accurate physical information than the former [27]. In the current work, we employ

the two-component DBM to study the nonequilibrium process of KHI.

This paper is organized as follows: in Sec. II, we introduce the DBM that provides

detailed nonequilibrium information and high parallel efficiency. In Sec. III, we use the

DBM to study the nonequilibrium effects, entropy of mixing, and free enthalpy of mixing in

the KHI process. Finally, conclusions are given in Sec. IV.

II. DISCRETE BOLTZMANN MODEL

In this work, simulation is based on two-dimensional description, with D = 2 representing

the space dimension. The discrete Boltzmann equation with single collision term takes the

form,
∂fσki
∂t

+ vki · ∇fσki = − 1

τσ
(fσki − f

σeq
ki ) , (1)

where t indicates the time, vki the discrete velocity, σ the fluid species, fσki (fσeqki ) the

discrete (equilibrium) distribution function, and τσ the relaxation time. Note that, for a two-

component system (σ = A and B), the relaxation times of the two species should be equal

in order to ensure the local momentum conservation, i.e., τA = τB = τ [33]. The relaxation

time is usually a function of species concentration. For simplicity, it is given a constant

here. Additionally, we adopt the second Runge-Kutta scheme for the time derivative and

the second order nonoscillatory and nonfree-parameter dissipative finite difference scheme

[34] for the space derivatives in Eq. (1).

The discrete velocity reads, vki = vkixex + vkiyey, with vkix = vk cos(2πi/8), vkiy =

vk sin(2πi/8). The suffix i indicates the direction of the discrete velocity, and k indicates

the k-th group of the particle velocities whose speed is vk. To be specific, i = 1, 2, . . . , 8 and

k = 0, 1, . . . , 4. To ensure the simulation robustness, an optimal choice is 0 = v0 < v1 <

v2 < v3 < v4. Figure 1 delineates the sketch of the discrete-velocity-model [35].

4



0
v

8

1

2

3

6

4

5 7

1
v

2
v

3
v

4
v

FIG. 1. Sketch of the discrete-velocity-model.

The expression of fσeqki reads,

fσeqki = nσFk[(1−
u2

2θσ
+

u4

8θσ2
) +

vkiεuε
θσ

(1− u2

2θσ
)

+
vkiεvkiπuεuπ

2θσ2
(1− u2

2θσ
) +

vkiεvkiπvkiϑuεuπuϑ
6θσ3

+
vkiεvkiπvkiϑvkiξuεuπuϑuξ

24θσ4
] (2)

with the flow speed u, and θσ = T/mσ, where mσ represents the molar mass, T the temper-

ature. The weighting coefficients are,

Fk = [v2k(v
2
k − v2k+1)(v

2
k − v2k+2)(v

2
k − v2k+3)]

−1

×[48θσ4 − 6(v2k+1 + v2k+2 + v2k+3)θ
σ3

+(v2k+1v
2
k+2 + v2k+2v

2
k+3 + v2k+3v

2
k+1)θ

σ2

−1

4
v2k+1v

2
k+2v

2
k+3θ

σ], (3)

F0 = 1− 8(F1 + F2 + F3 + F4), (4)

where the suffixes

mod {k + l, 4} =

 k + l for k + l ≤ 4,

k + l − 4 for k + l > 4.
(5)

The mole concentration, mass density, flow velocity, and energy of species σ are calculated

as below,

nσ =
∑

ki
fσki, (6)
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ρσ = mσnσ, (7)

uσ =
1

nσ

∑
ki
fσkivki, (8)

Eσ =
1

2
mσ
∑

ki
fσkivki · vki. (9)

The mole concentration, mass density, flow velocity and temperature of the mixing are

n =
∑

σ n
σ, ρ =

∑
σ ρ

σ, u =
∑

σ(ρσuσ)/ρ, and T = (2
∑

σ E
σ − ρu · u)/D, respectively.

Mathematically, the coupling between the two sets of Boltzmann equations (1) is achieved

via the flow speed u = |u| and temperature T which enter the expression of the equilibrium

distribution functions in Eq. (2). In this way, the cross-collisions of the species A and B

exchange physical information between them.

It is easy to prove that the DBM could recover the NS equations in the hydrodynamic

limit [31]. Moreover, the DBM can be employed to measure the following nonequilibrium

manifestations,

∆σ∗
2 = mσ

∑
ki

(fσki − f
σeq
ki ) v∗kiv

∗
ki, (10)

∆σ∗
3,1 = mσ

∑
ki

(fσki − f
σeq
ki ) (v∗ki · v∗ki) v∗ki, (11)

∆σ∗
3 = mσ

∑
ki

(fσki − f
σeq
ki ) v∗kiv

∗
kiv
∗
ki, (12)

∆σ∗
4,2 = mσ

∑
ki

(fσki − f
σeq
ki ) (v∗ki · v∗ki) v∗kiv

∗
ki, (13)

with the central velocity, v∗ki = vki − u. The second-order tensor ∆σ∗
2 = ∆σ∗

2,αβeαeβ cor-

responds to the viscous stress tensor, with eα the unit vector in the α direction. The

vector ∆σ∗
3,1 = ∆σ∗

3,1,αeα is related to the heat flux. ∆σ∗
3 = ∆σ∗

3,αβγeαeβeγ and ∆σ∗
4,2 =

∆σ∗
4,2,αβeαeβ are higher order nonequilibrium quantities beyond traditional NS models. To

roughly estimate the “degree of nonequilibrium”, we introduce the following four con-

densed measures, |∆σ∗
2 | =

√
∆σ∗2

2,xx + 2∆σ∗2
2,xy + ∆σ∗2

2,yy,
∣∣∆σ∗

3,1

∣∣ =
√

∆σ∗2
3,1,x + ∆σ∗2

3,1,y, |∆σ∗
3 | =√

∆σ∗2
3,xxx + 3∆σ∗2

3,xxy + 3∆σ∗2
3,xyy + ∆σ∗2

3,yyy, and
∣∣∆σ∗

4,2

∣∣ =
√

∆σ∗2
4,2,xx + 2∆σ∗2

4,2,xy + ∆σ∗2
4,2,yy. The val-

ue of |∆σ∗
2 | is used to measure the strength of the viscous stress; ∆σ∗

3,1 indicate the intensity

of the heat flux; |∆σ∗
3 | and

∣∣∆σ∗
4,2

∣∣ represent the degrees of ∆σ∗
3 and ∆σ∗

4,2, respectively. Phys-

ically, |∆σ∗
2 |,

∣∣∆σ∗
3,1

∣∣, |∆σ∗
3 |, and

∣∣∆σ∗
4,2

∣∣ are zero only in equilibrium. Otherwise, they are

nonzero, and become larger as the fluid system departs further from its local equilibrium.
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Tests Test-1 Test-2 Test-3 Test-4 Test-5 Test-6 Test-7 Test-8

Processing cores 1× 1 2× 2 4× 4 8× 8 16× 16 32× 32 64× 64 128× 128

Running time (s) 755840 198112 55120 13792 3476 881 221 59

Efficiency 100% 95.4% 85.7% 85.6% 84.9% 83.8% 83.5% 82.0%

TABLE I. Parallel efficiency study of the DBM.

FIG. 2. Mole fractions Y A in the binary diffusion at time instants: t = 0.005, 0.20, and 0.60,

respectively. Symbols stand for DBM simulation results, and solid lines for the corresponding

analytical solutions.

Theoretically, similar to the standard LBM, the DBM has the outstanding merits of

simplicity for programming and high parallel efficiency, because the discrete Boltzmann

equation is uniformly linear and all the information transfer in DBM is local in time and

space. However, the parallel efficiency of our DBM has never been demonstrated in a

numerical way. To this end, we conduct simulations using parallel programming based on

the Message-Passing Interface standard. Calculations are carried out on the supercomputer

ARCHER. Table I exhibits the parallel efficiency. Eight tests are performed using the

number of processing cores, Np = 1× 1, 2× 2, 4× 4, 8× 8, 16× 16, 32× 32, 64× 64, and

128×128, respectively. The mesh is chosen as Nx×Ny = 3200×3200. The other parameters

are identical to those for Fig. 4. After 8000 iterative steps, the running time is t1 = 755840,

t2 = 198112, t3 = 55120, t4 = 13792, t5 = 3476, t6 = 881, t6 = 221, and t8 = 59 seconds,

respectively. Define the parallel efficiency as Ep = Npti/t1, with i = 1, 2, . . . , 6. Then the

efficiency is 100%, 95.4%, 85.7%, 85.6%, 84.9%, 83.8%, 83.5%, and 82.0% for the eight tests,

respectively. It is evident that the parallel efficiency of the DBM is quite high.
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To validate its capability of describing the interaction between two species, this DBM is

used to simulate the binary diffusion. Initially, the mole concentration is described by the

following step function,  (nA, nB)L = (0.9, 0.1),

(nA, nB)R = (0.1, 0.9),

where the suffixes L and R indexes the left and right parts, respectively. The temperature

is T = 1, the velocity u = 0, the molecular mass mσ = 1, the relaxation time τ = 10−3, the

temporal step ∆t = 10−5, the spatial step ∆x = ∆y = 5× 10−4, the mesh grid Nx ×Ny =

100 × 1. Figure 2 displays the mole fraction of species A at three time instants. Symbols

are for DBM results, and solid lines for the analytical solution

Y σ =
1

2
+

∆Y σ

2
Erf(

x√
4χt

),

where ∆Y σ = 0.7 is the initial mole fraction difference, and χ = 10−3 the diffusion coefficient.

We can find a satisfying agreement between the two sets of results.

III. SIMULATION AND INVESTIGATION

In this section, let us focus on the KHI. The initial field configuration is delineated in

Fig. 3. The left part is occupied by species A with an upward velocity uL = uLey and a

mole concentration nAL , the right part is full of B with a downward velocity uR = −uRey

and a mole concentration nBR. Between them is a perturbed interface with a transition layer.

Mathematically,  nσ =
nσL+n

σ
R

2
− nσL−n

σ
R

2
tanh(x−x0+W cos(ky)

Dρ
),

u = uL+uR
2
− uL−uR

2
tanh(x−x0+W cos(ky)

Du
),

where Dρ (Du) represents the width of density (velocity) transition layer, x0 denotes the

averaged x position of the cosine-shaped interface, W and k are the perturbation amplitude

and wave number, respectively. The pressure p is equal at the two sides of the interface. The

two species have an identical velocity and temperature at the same location. The length

and width of the physical domain are Lx = 1.5 and Ly = 0.5, respectively. The parameters

are chosen as nAL = 1, nAR = 0, nBL = 0, nBR = 1, uL = 0.5, uR = 0.5, Dρ = Du = Lx/300,

W = Lx/200, x0 = Lx/2, k = 2π/Ly. Furthermore, boundary conditions are as follows: the

inflow/outflow (zero gradient) boundary conditions in the x direction, the periodic boundary
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conditions in the y direction. In addition, all quantities are expressed in nondimensional

forms, i.e., the widely accepted LB units [27], in this work.

Lx 

A BLy 

FIG. 3. Field configuration.

A. Grid convergence test

Grid convergence is one of the most important issues in numerical simulations. To verify

the validity of the simulation, a grid convergence test is firstly carried out using various

grids: Nx × Ny = 750 × 250, 1500 × 500, 3000 × 1000, and 6000 × 2000, respectively. The

time step is ∆t = 2.5 × 10−5, the relaxation time τ = 2 × 10−4, the molar mass mA = 3,

and mB = 1. Figure 4 delineates the molar fraction Y A (= nA/n) along the line y = Ly/2

at the time t = 1. As one can see, with increasing mesh grids, the numerical errors become

smaller and smaller. The simulation results between grids 6000× 2000 and 3000× 1000 are

small enough. Taking account of both accuracy and efficiency, we carry out this simulation

on the gird 3000× 1000.

Figure 5 depicts the molar fraction Y A, pressure p (= nT ), and vorticity ω (= ∂xuy−∂yux)

at time instants t = 0.5, 1.0, 2.0, and 3.0, respectively. It is evident that the perturbed

interface begins to wiggle due to the velocity shear at t = 0.5. After the initial linear growth

stage, a rolled-up vortex emerges around the interface at t = 1.0. Then, at t = 2.0, a larger

vortex is observed in the snapshot. At t = 3.0, the thickening interfacial layer indicates that

KHI promotes the mixing and penetrating of the miscible fluid components. Comparing

pressure contours with vorticity, we can find that the minimum pressure is located at the

vortex center, and the maximum pressure is at the position where two opposite direction

flows encounter each other. The flow field varies with space and time. In fact, the pressure

gradient offers the centripetal force required by the rotating flows. Moreover, the interface

is continuous and smooth, as shown in Fig. 5. The coherent structures demonstrate that

the DBM has a good ability of capturing interface deformation.
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FIG. 4. Grid convergence test: molar fraction of species A along the line y = Ly/2 at the time t = 1.

The solid, dashed, dotted, and dot-dashed lines denote the mesh grids Nx × Ny = 6000 × 2000,

3000× 1000, 1500× 500, and 750× 250, respectively. The inset enlarges the outlined rectangular

region.

t = 0.5

t = 1.0

t = 2.0

t = 3.0

Fraction Pressure Vorticity

FIG. 5. Contours of physical quantities at time instants t = 0.5, 1.0, 2.0, and 3.0, respectively. The

leftmost, middle, and rightmost columns show the snapshots of the molar fraction of A, pressure,

and vorticity, respectively.

B. Nonequilibrium effects

As an initial application, we preliminarily study two kinds of nonequilibrium effects,

|∆σ∗
2 | and

∣∣∆σ∗
3,1

∣∣, in the evolution of KHI. To give an intuitive impression, Fig. 6 depicts
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2 | and

∣∣∆σ∗
3,1

∣∣, at the moment t = 2.0.

the contours of them at the moment t = 2.0. The values of
∣∣∆A∗

2

∣∣ and
∣∣∆B∗

2

∣∣ are greater

than zero around the vortex where the shear is significant, while they are close to zero far

away from the interface where the velocity difference is low. Meanwhile, values of
∣∣∆A∗

3,1

∣∣
and

∣∣∆B∗
3,1

∣∣ are large at the contact between the two media, while they approach zero where

the interaction between the fluids is weak.
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(c) (d)

FIG. 7. Evolution of nonequilibrium quantities with various relaxation times: τ1 = 10−4 (squares),

τ2 = 2× 10−4 (diamonds), τ3 = 4× 10−4 (circles), and τ4 = 8× 10−4 (triangles), respectively. (a)∫∫ ∣∣∆A∗
2

∣∣ dxdy, (b)
∫∫ ∣∣∆B∗

2

∣∣ dxdy, (c)
∫∫ ∣∣∆A∗

3,1

∣∣ dxdy, (d)
∫∫ ∣∣∆B∗

3,1

∣∣ dxdy.

To investigate the influence of relaxation time on the nonequilibrium KHI, we conduct four

runs with various relaxation times, τ1 = 10−4, τ2 = 2×10−4, τ3 = 4×10−4, and τ4 = 8×10−4,

11



respectively. Let us define the Reynolds number as Re = ρ̄ūL̄/µ̄, where the characteristic

density is ρ̄ = (mAnA +mBnB)/2, the characteristic velocity (uL +uR)/2, the characteristic

length L̄ = Ly, the dynamic viscosity µ̄ = pτ . Correspondingly, Re = 3750, 1875, 937.5,

and 468.75, for the four runs, respectively. Taking into account of both numerical accuracy

and computational efficiency, we chose the spatial step as ∆x = ∆y = 2.5× 10−4, 5× 10−4,

10−3, and 2 × 10−3, respectively. And the temporal step is ∆t = 1.25 × 10−5, 2.5 × 10−5,

5× 10−5, and 10−4, respectively.

Figure 7 plots the evolution of nonequilibrium quantities
∫∫
|∆σ∗

2 | dxdy and
∫∫ ∣∣∆σ∗

3,1

∣∣ dxdy,

respectively, where the integral is extended over all physical space Lx × Ly. Actually,∫∫
|∆σ∗

2 | dxdy and
∫∫ ∣∣∆σ∗

3,1

∣∣ dxdy indicate the global nonequilibrium effect (GNE) of species

σ in the physical region from two different points of view.
∫∫
|∆σ∗

2 | dxdy stands for the

global strength of the viscous stress, while
∫∫ ∣∣∆σ∗

3,1

∣∣ dxdy represents the global intensity

of the heat flux. The lines with squares, diamonds, circles, and triangles stand for the

relaxation times τ1, τ2, τ3, and τ4, respectively. It is evident that the GNEs become stronger

for larger relaxation times. The evolution of GNE shows firstly increasing then decreas-

ing trends.
∫∫
|∆σ∗

2 | dxdy and
∫∫ ∣∣∆σ∗

3,1

∣∣ dxdy do not reach their peaks simultaneously,

and
∫∫
|∆σ∗

2 | dxdy reaches the maximum earlier than
∫∫ ∣∣∆σ∗

3,1

∣∣ dxdy. Physically, there are

competitive mechanisms in the evolution of GNEs. The GNE is associated with the local

nonequilibrium effect and the nonequilibrium area. On the one hand, the interface is length-

ened with the development of the vortex. The increasing interface enhances the GNEs. On

the other hand, the interface is widened in the process of the binary diffusion and thermal

conductivity, hence the physical gradients become smooth. The reducing physical gradients

weaken the local nonequilibrium effects.

C. Entropy of mixing

In thermodynamics, entropy of mixing is part of the increasing entropy when separate

systems with different components contact and mix, before the establishment of a thermo-

dynamic equilibrium state. The statistical concept of randomness is utilized for statistical

mechanical explanation of the entropy of mixing. Mathematically, the entropy of mixing

per unit volume takes the form,

SM = −
∑

σ
nσ lnY σ,

12



where Y σ is the molar fraction of species σ. The entropy of mixing is a typical thermody-

namic nonequilibrium variable. It indicates the mixing extent and nonequilibrium process

in various miscible fluid systems.

t = 0.5

t = 2.0

t = 1.0

t = 3.0

1
τ

2
τ

3
τ

4
τ

FIG. 8. Contours of the entropy of mixing at time instants t = 0.5, 1.0, 2.0, and 3.0, respectively.

The four columns, from left to right, correspond to the relaxation times τ1 = 10−4, τ2 = 2× 10−4,

τ3 = 4× 10−4, and τ4 = 8× 10−4, respectively.

Figure 8 illustrates the snapshots of entropy of mixing in the evolution of KHI. The four

columns, from left to right, correspond to cases with relaxation times τ1, τ2, τ3, and τ4,

respectively. The four rows, from top to bottom, correspond to the time instants t = 0.5,

1.0, 2.0, and 3.0, respectively. It is clear in each column that the mixing area increases

in the evolution of KHI. The rolled-up vortex lengthens the interface and promotes the

mixing process. Meanwhile, it can be found in every row that the mixing area is larger for a

larger relaxation time, because the diffusion coefficient which enhances the mixing process

is proportional to the relaxation time [36].

For the purpose of a quantitative study, we probe the temporal evolution of entropy of

mixing with various relaxation times. Figure 9 (a) shows
∫∫

SMdxdy, where the integral

is extended over all physical region, and (b) plots its growth rate. Obviously, in Fig. 9

(a), the entropy of mixing is higher for a larger relaxation time, which is consistent with

Fig. 8. Moreover, it is interesting to see in Fig. 9 (b) that the evolution of its growth

rate shows three trends, i.e., firstly reducing, then increasing, and finally decreasing trends.

Physically, there are competitive mechanisms in the evolution of the entropy of mixing. (i)
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FIG. 9. Evolution of entropy of mixing and its growth rate with various relaxation times: τ1 = 10−4

(squares), τ2 = 2 × 10−4 (diamonds), τ3 = 4 × 10−4 (circles), and τ4 = 8 × 10−4 (triangles),

respectively.

The binary diffusion is fast when the gradient of molar fraction is sharp. The transition

layer of the initial interface is relatively narrow, hence the diffusion and mixing is relatively

fast. The mixing speed reduces with the increasing width of the transition layer in the early

stage. (ii) The mixing process is promoted by the increasing length of material interface

with the development of the vortex. In the evolution of KHI, the interface becomes longer

and longer, hence the mixing speed increases in the second stage. (iii) With the ongoing

diffusion, the material interface becomes wide and the gradients are smoothed. The mixing

speed reduces and begins to approach zero, when the gradient becomes smaller and smaller

around the vortex, in the final stage. It is of interest to find that the fast diffusion promotes

the mixing process directly and initially, but slows the mixing growth indirectly and finally,

in the dynamic process of KHI.

D. Free enthalpy of mixing

In thermodynamics, free enthalpy of mixing is another interesting thermodynamic

nonequilibrium variable. Let us introduce Gibbs free enthalpy of mixing per unit volume as

below,

HM =
∑

σ
nσT lnY σ.

Note that HM ≤ 0 since 0 ≤ Y σ ≤ 1 and lnY σ ≤ 0. In other words, free enthalpy of

mixing is always nonpositive, and it is opposite to entropy of mixing that is nonnegative.

Mathematically, HM = −SMT .
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FIG. 10. Contours of minus free enthalpy of mixing (−HM ) and temperature (T) with the relax-

ation time τ = 10−4 at time instants t = 0.5, 1.0, 2.0, and 3.0, respectively.

Figure 10 depicts the fields of free enthalpy of mixing and temperature at time instants

t = 0.5, 1.0, 2.0, and 3.0, respectively. The case corresponds to the first column in Fig. 8

with the relaxation time τ1 = 10−4. In order to make a clear comparison to the entropy of

mixing, the minus free enthalpy of mixing is shown. Since the free enthalpy of mixing is the

function of the entropy of mixing and temperature, the contours of temperature are plotted

aside. A comparison between Figs. 8 and 10 gives two points. On the one hand, the entropy

of mixing and minus free enthalpy of mixing exhibit similar contours, as both of them are

located at the interface between the two species. On the other hand, the entropy of mixing

and minus free enthalpy of mixing show some different values due to the spatio-temporal

variation of temperature in the evolution of KHI.

Figure 11 (a) plots
∫∫

HMdxdy, where the integral is extended over all physical region,

and (b) illustrates its growth rate. In contrast to the entropy of mixing, the free enthalpy

of mixing is lower for a larger relaxation time, and its growth rate displays three different

trends, i.e., firstly increasing, then decreasing, and finally increasing trends. The tendency

of the growth rate of free enthalpy of mixing is opposite to that of entropy of mixing. The

physical mechanisms for the free enthalpy of mixing are identical with that for the entropy

of mixing.
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FIG. 11. Evolution of the free enthalpy of mixing and its growth rate with various relaxation

times: τ1 = 10−4 (squares), τ2 = 2× 10−4 (diamonds), τ3 = 4× 10−4 (circles), and τ4 = 8× 10−4

(triangles), respectively.

E. Atwood number

Atwood number is an important parameter that affects the growth of KH instability. It

is defined as

At =
ρA − ρB

ρA + ρB
=
mA −mB

mA +mB
,

with ρσ = nσmσ and nσ = 1 in this section. Let us consider four cases, i.e., mA = 1, 2, 3,

and 4, with fixed mB = 1. The corresponding Atwood numbers are At1 = 0, At2 = 1/3,

At3 = 1/2, and At4 = 3/5, respectively. The other parameters are the same as those in Fig.

5.

Figure 12 depicts the snapshots of the molar fraction Y A, the speed |u| (=
√
u2x + u2y),

and the temperature T at time t = 1 with various Atwood numbers. We can find an upward

movement in the vortex center with the increasing Atwood numbers. Physically, the average

flow velocity in the y direction, uy, is zero around the interface for the case mA = mB, and

it increases with the increasing mass ratio of species A to B, i.e., Rm = mA : mB. Hence

the vortex goes up as the flow speed uy increases with the increasing Atwood numbers.

Moreover, it is clear in the first column that the vortex becomes wider in the x direction

for a smaller Atwood number. The second column shows that the maximum flow speed

increases with the increasing Atwood number. It can be obtained from the first and second

columns that the light medium B has larger speed than the heavy one A around the vortex.

Finally, the third column shows that, with the increasing Atwood number, the maximum

temperature increases and the minimum temperature reduces. It is seen from the first
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FIG. 12. Contours of physical quantities at time t = 1. The leftmost, middle, and rightmost most

columns are for the molar fraction of A, flow speed, and temperature, respectively. The four rows

from top to bottom correspond to Atwood numbers At1 = 0, At2 = 1/3, At3 = 1/2, and At4 = 3/5,

respectively.

and third columns that the minimum temperature is located at the vortex center, while the

maximum temperature is located at the interface where the conversion from the shear kinetic

energy to the internal energy is intense. In sum, the vortex has a smaller area, the light

medium has faster speed, and the temperature has sharper gradients for a larger Atwood

number.

Figuer 13 exhibits the evolution of nonequilibrium quantities with various Atwood num-

bers. Panel (a) shows that, for species A, the global strength of viscous stress,
∫∫ ∣∣∆A∗

2

∣∣ dxdy,

is smaller for a larger Atwood number. On the contrary, for species B, the global strength of

the viscous stress,
∫∫ ∣∣∆B∗

2

∣∣ dxdy, increases with the increasing Atwood number, as shown

in panel (b). Physically, with the increasing mass ratio of species A to B, the flow velocity

of the heavy medium A has a relatively small change, while the flow velocity of the light

one B has a relatively large change, during an interval. In addition, panel (c) shows that

the global intensity of the heat flux,
∫∫ ∣∣∆A∗

3,1

∣∣ dxdy, decreases with the increasing Atwood

number. While in panel (d), the peak of the global intensity of the heat flux,
∫∫ ∣∣∆B∗

3,1

∣∣ dxdy,

is similarly high for different Atwood numbers. Because, mathematically,
∣∣∆A∗

3,1

∣∣ is roughly

inversely proportional to mσ [32]. Furthermore, for a larger Atwood number, the peaks of

either
∫∫
|∆σ∗

2 | dxdy or
∫∫ ∣∣∆σ∗

3,1

∣∣ dxdy emerge later, because the amplitude of the perturbed
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FIG. 13. Evolution of nonequilibrium quantities with various Atwood numbers: At1 = 0 (squares),

At2 = 1/3 (diamonds), At3 = 1/2 (circles), and At4 = 3/5 (triangles), respectively. (a)∫∫ ∣∣∆A∗
2

∣∣ dxdy, (b)
∫∫ ∣∣∆B∗

2

∣∣ dxdy, (c)
∫∫ ∣∣∆A∗

3,1

∣∣ dxdy, (d)
∫∫ ∣∣∆B∗

3,1

∣∣ dxdy.

interface grows more slowly [6].

Figure 14 illustrates the evolution of entropy of mixing, free enthalpy of mixing, and

their growth rates with the Atwood number: At1 = 0 (squares), At2 = 1/3 (diamonds),

At3 = 1/2 (circles), and At4 = 3/5 (triangles), respectively. It is evident in panel (a) that

the entropy of mixing is lower for a larger Atwood number. Panel (b) shows that, for each

Atwood number, the growth rate of entropy of mixing has three trends, i.e., firstly reducing,

then increasing, and finally decreasing trends. In contrast, as shown in panels (c) and (d),

the free enthalpy of mixing is higher for a larger Atwood number, and its growth rate shows

firstly increasing, then reducing, and finally increasing trends. The trough (peak) in panel

(b) and the peak (trough) in panel (d) take place almost simultaneously. Both the trough

and peak emerge earlier for a smaller Atwood number in either panel (b) or (d). Because the

growth rate of the perturbed interface is higher and the mixing area is wider for a smaller

Atwood number, as shown in Fig. 12.
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FIG. 14. (a) Entropy of mixing and (b) its growth rate, (c) free enthalpy of mixing and (d) its

growth rate, with the Atwood number: At1 = 0 (squares), At2 = 1/3 (diamonds), At3 = 1/2

(circles), and At4 = 3/5 (triangles), respectively.

IV. CONCLUSIONS AND DISCUSSIONS

As a mesoscopic kinetic method, the discrete Boltzmann method (DBM) not only recovers

the traditional NS equations in the continuum limit, but also gives various nonequilibrium

information. Besides, the discrete Boltzmann equation is in a uniform linear form, which is

easy to code with high parallel efficiency. In this work, we adopt the DBM to investigate

the nonequilibrium process of Kelvin-Helmholtz instability (KHI). First of all, two kinds of

nonequilibrium manifestations, i.e., the viscous stresses and heat fluxes, are preliminarily

studied. It is found that the global intensities of viscous stresses and heat fluxes become

stronger for a larger relaxation time, and they firstly increase then decrease in the KHI pro-

cess. Physically, the increasing nonequilibrium area enhances the GNEs, while the reducing

physical gradients weaken the nonequilibrium effects.

In addition, the entropy of mixing is higher for a larger relaxation time, and its growth

rate shows firstly reducing, then increasing, and finally decreasing trends in the KHI process.

While the free enthalpy of mixing is lower for a larger relaxation time, and its growth rate

has firstly increasing, then decreasing, and finally increasing trends. The free enthalpy of

mixing is opposite to the entropy of mixing. Physically, there are competitive mechanisms.
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(i) The binary diffusion is fast when the gradient of molar fraction is sharp. The mixing

speed reduces with the increasing width of the transition layer in the early stage. (ii) The

mixing process is promoted by the increasing length of material interface in the second

stage. (iii) As physical gradients are smoothed due to the binary diffusion, the mixing speed

reduces and begins to approach zero in the final stage. It is of interest to find that the

diffusion promotes the mixing process directly and initially, but hinders the mixing growth

indirectly and eventually.

Moreover, we study the influence of Atwood number on the growth of the nonequilibrium

KHI. With the increasing Atwood number, the global strength of viscous stress on the

heavy medium reduces, while the one on the light medium increases. Physically, with the

increasing mass ratio, the heavy medium has a relatively small velocity change, while the

light has a relatively large velocity change, in the dynamic process. Since the heat flux is

roughly inversely proportional to the molar mass, the global intensity of the heat flux reduces

with the increasing molar mass. Furthermore, the growth rate of the perturbed interface

increases with the increasing Atwood number. Consequently, for a larger Atwood number,

the peaks of nonequilibrium manifestations emerge earlier, and the entropy of mixing and

free enthalpy of mixing change faster.
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